Introduction
  • Lesson-01: Introduction
  • Lesson-02: Field intensity and potential
  • Lesson-03: Electron Volt
  • Lesson-04: Field Vs Potential
  • Lesson-05: Current Density
  • Lesson-06: Drift current
  • Lesson-07: Diffusion current
  • Lesson-08: Metals, Semiconductors and Insulators
  • Lesson-09: Intrisic semiconductor
  • Lesson-10: Summary
  • Lesson-11: A small note on energies
  • Lesson-12: Charge carriers in a semiconductor in unit volume
  • Lesson-13: n-type semiconductor
  • Lesson-14: p-type semiconductor
  • Lesson-15: Atomic models
  • Lesson-16: Bhor atomic model
  • Lesson-17: Probability density function(PDF)
  • Lesson-18: Schrodinger's Wave equation
  • Lesson-19: Quantum numbers
  • Lesson-20: Electron distribution in Silicon
  • Lesson-21: Energy levels in Silicon atom
Energy Band Theory
  • Lesson-01 Introduction
  • Lesson-02 Energy band formation in Silicon
  • Lesson-03 Energy bands
  • Lesson-04 Energy bands explained with covalent bond structure
  • Lesson-05 Metals, Insulators and semiconductors
  • Lesson-06 Energy bands in Intrinsic semiconductor
  • Lesson-07 Energy bands in Extrinsic semiconductor
  • Lesson-08 E vs K diagram
  • Lesson-09 Effective Mass
  • Lesson-10 Effective mass of an electron in conduction band
  • Lesson-11 Effective mass of a hole in valence band
  • Lesson-12 Direct and Indirect band gap semiconductors
  • Lesson-13 Density of states
  • Lesson-14 Density of states-Derivation(Optional)
  • Lesson-15 density of states graphical representation
  • Lesson-16 Fermi Dirac distribution function-Introduction
  • Lesson-17 Fermi Dirac function at 0K temperature
  • Lesson-18 Fermi Dirac function at various temperatures
  • Lesson-19 Maxwell-Boltzmann approximation
  • Lesson-20 Equilibrium carrier concentrations
  • Lesson-21 Free electron concentration in conduction band-Derivation
  • Lesson-22 Electrons in Conduction band and Holes in Valence band
  • Lesson-23 Intrinsic carrier concentration-Observations and expressions
  • Lesson-24 Intrinsic Fermi energy level
  • Lesson-25 Law of mass action
  • Lesson-26 n-type semiconductor carrier concentration
  • Lesson-27 n-type semiconductor Fermi energy level
  • Lesson-28 p-type semiconductor-carrier concentration
  • Lesson-29 Freeze out and complete ionisation
  • Lesson-30 Partial Ionisation
  • Lesson-31 Compensated semiconductor
  • Lesson-32 Compensated semiconductor-Mathematical analysis
  • Lesson-33 Complete Summary of the chapter
  • Lesson-34 Constant Values
Transport Phenomenon of semiconductors
  • Lesson-01 Introduction
  • Lesson-02 Mobility
  • Lesson-03 Mobility- Mathematical expressions
  • Lesson-04 Mobility as a function of field intensity
  • Lesson-05 Mobility vs Temperature
  • Solved example-01
  • Lesson-06: Drift current density
  • Lesson-07 Drift current density and conductivity
  • Solved example-02
  • Solved example-03
  • Solved example-04
  • Solved example-05
  • Solved example-06
  • Solved example-07
  • Lesson-08 Resistivity
  • Solved example-08
  • Solved example-09
  • Lesson-09 Diffusion current density
  • Lesson-10 Diffusion current density derivation
  • Lesson-11 Total current density
  • Solved example-10
  • Solved example-11
  • Lesson-12 Built-in potential
  • Lesson-13 Einstein relation
  • Lesson-14 Volt equivalent of temperature
  • solved example-12
  • Solved example-13
  • Lesson-15 Continuity equation-I(derivation)
  • Lesson-16 Continuity equation-II(Steady state condition)
pn Junction diode
  • Lesson-01 Introduction
  • Lesson-02 pn junction formation
  • Lesson-03 open circuit condition in a junction diode
  • Lesson-04 Forward bias condition
  • Lesson-05 Reverse bias condition
  • Lesson-06 Energy band diagram in open circuit condition
  • Lesson-07 Contact potential derivation
  • Lesson-08 Charge density
  • Lesson-09 Field intensity
  • Lesson-10 Maximum field intensity-derivation
  • Lesson-11 Junction width vs Contact potential
  • Lesson-12 Doping concentration vs Junction penetration